The use of cytochrome P450 genes to introduce herbicide tolerance in crops: a review

1999 ◽  
Vol 55 (9) ◽  
pp. 867-874 ◽  
Author(s):  
Hideo Ohkawa ◽  
Hisae Tsujii ◽  
Yasunobu Ohkawa
BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ke Chen ◽  
Yajun Peng ◽  
Liang Zhang ◽  
Long Wang ◽  
Donghai Mao ◽  
...  

Abstract Background Chinese sprangletop [Leptochloa chinensis (L.) Nees] is an annual malignant weed, which can often be found in paddy fields. Cyhalofop-butyl is a specialized herbicide which is utilized to control L. chinensis. However, in many areas, L. chinensis has become tolerant to this key herbicide due to its continuous long-term use. Results In this study, we utilized a tolerant (LC18002) and a sensitive (LC17041) L. chinensis populations previously identified in our laboratory, which were divided into four different groups. We then employed whole transcriptome analysis to identify candidate genes which may be involved in cyhalofop-butyl tolerance. This analysis resulted in the identification of six possible candidate genes, including three cytochrome P450 genes and three ATP-binding cassette transporter genes. We then carried out a phylogenetic analysis to identify homologs of the differentially expressed cytochrome P450 genes. This phylogenetic analysis indicated that all genes have close homologs in other species, some of which have been implicated in non-target site resistance (NTSR). Conclusions This study is the first to use whole transcriptome analysis to identify herbicide non-target resistance genes in L. chinensis. The differentially expressed genes represent promising targets for better understanding herbicide tolerance in L. chinensis. The six genes belonging to classes already associated in herbicide tolerance may play important roles in the metabolic resistance of L. chinensis to cyhalofop-butyl, although the exact mechanisms require further study.


2019 ◽  
Vol 220 (3) ◽  
pp. 467-475 ◽  
Author(s):  
Jacob M Riveron ◽  
Silvie Huijben ◽  
Williams Tchapga ◽  
Magellan Tchouakui ◽  
Murielle J Wondji ◽  
...  

Abstract Background Insecticide resistance poses a serious threat to insecticide-based interventions in Africa. There is a fear that resistance escalation could jeopardize malaria control efforts. Monitoring of cases of aggravation of resistance intensity and its impact on the efficacy of control tools is crucial to predict consequences of resistance. Methods The resistance levels of an Anopheles funestus population from Palmeira, southern Mozambique, were characterized and their impact on the efficacy of various insecticide-treated nets established. Results A dramatic loss of efficacy of all long-lasting insecticidal nets (LLINs), including piperonyl butoxide (PBO)–based nets (Olyset Plus), was observed. This An. funestus population consistently (2016, 2017, and 2018) exhibited a high degree of pyrethroid resistance. Molecular analyses revealed that this resistance escalation was associated with a massive overexpression of the duplicated cytochrome P450 genes CYP6P9a and CYP6P9b, and also the fixation of the resistance CYP6P9a_R allele in this population in 2016 (100%) in contrast to 2002 (5%). However, the low recovery of susceptibility after PBO synergist assay suggests that other resistance mechanisms could be involved. Conclusions The loss of efficacy of pyrethroid-based LLINs with and without PBO is a concern for the effectiveness of insecticide-based interventions, and action should be taken to prevent the spread of such super-resistance.


BMC Cancer ◽  
2007 ◽  
Vol 7 (1) ◽  
Author(s):  
Lara Bethke ◽  
Emily Webb ◽  
Gabrielle Sellick ◽  
Matthew Rudd ◽  
Stephen Penegar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document